Search results for " shells"

showing 10 items of 60 documents

Dynamic tuning of the director field in liquid crystal shells using block copolymers

2020

When an orientationally ordered system, like a nematic liquid crystal (LC), is confined on a self-closing spherical shell, topological constraints arise with intriguing consequences that depend critically on how the LC is aligned in the shell. We demonstrate reversible dynamic tuning of the alignment, and thereby the topology, of nematic LC shells stabilized by the nonionic amphiphilic block copolymer Pluronic F127. Deep in the nematic phase, the director (the average molecule orientation) is tangential to the interface, but upon approaching the temperature TNI of the nematic– isotropic transition, the director realigns to normal. We link this to a delicate interplay between an interfacial …

medicine.medical_specialty: Physics [G04] [Physical chemical mathematical & earth Sciences]Shell (structure)Topological dynamics02 engineering and technology01 natural sciencessurfactantsSpherical shellTopological defectsTopological defectLiquid crystal shellsLiquid crystalPhase (matter)0103 physical sciencesmedicineQA010306 general physicsTopology (chemistry)Boundary conditionsIsotropy021001 nanoscience & nanotechnologyCondensed Matter::Soft Condensed Matter: Physique [G04] [Physique chimie mathématiques & sciences de la terre]Chemical physics0210 nano-technologyConfinementPhysical Review Research
researchProduct

A discontinuous Galerkin formulation for nonlinear analysis of multilayered shells refined theories

2023

A novel pure penalty discontinuous Galerkin method is proposed for the geometrically nonlinear analysis of multilayered composite plates and shells, modelled via high-order refined theories. The approach allows to build different two-dimensional equivalent single layer structural models, which are obtained by expressing the covariant components of the displacement field through-the-thickness via Taylor’s polynomial expansion of different order. The problem governing equations are deduced starting from the geometrically nonlinear principle of virtual displacements in a total Lagrangian formulation. They are addressed with a pure penalty discontinuous Galerkin method using Legendre polynomial…

Mechanics of MaterialsMultilayered shells Geometrical nonlinearity Discontinuous Galerkin method High-order modellingMechanical EngineeringGeneral Materials ScienceSettore ING-IND/04 - Costruzioni E Strutture AerospazialiCondensed Matter PhysicsCivil and Structural EngineeringInternational Journal of Mechanical Sciences
researchProduct

Deep conservation of bivalve nacre proteins highlighted by shell matrix proteomics of the Unionoida Elliptio complanata and Villosa lienosa.

2016

The formation of the molluscan shell nacre is regulated to a large extent by a matrix of extracellular macromolecules that are secreted by the shell-forming tissue, the mantle. This so-called ‘calcifying matrix’ is a complex mixture of proteins, glycoproteins and polysaccharides that is assembled and occluded within the mineral phase during the calcification process. Better molecular-level characterization of the substances that regulate nacre formation is still required. Notable advances in expressed tag sequencing of freshwater mussels, such as Elliptio complanata and Villosa lienosa , provide a pre-requisite to further characterize bivalve nacre proteins by a proteomic approach. In this…

Unionidae0301 basic medicineUnionoida[ SDV.BA.ZI ] Life Sciences [q-bio]/Animal biology/Invertebrate ZoologyVillosa lienosaBiomedical EngineeringBiophysicsLife Sciences–Earth Science interfaceBioengineeringBiologyProteomicsBiochemistrybivalveEvolution MolecularBiomaterials03 medical and health sciencesPaleontologyCalcification PhysiologicproteomicsAnimal Shells[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]shell nacreShell matrixAnimalscalcium carbonate14. Life underwaterNacreMantle (mollusc)chemistry.chemical_classificationExtracellular Matrix ProteinsElliptiobiology.organism_classificationbiomineralization[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate Zoology030104 developmental biologyBiochemistrychemistry[ SDV.BBM.GTP ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]organic matrix proteinsGlycoproteinBiotechnologyBiomineralization
researchProduct

Raman Investigations to Identify Corallium rubrum in Iron Age Jewelry and Ornaments

2016

International audience; During the Central European Iron Age, more specifically between 600 and 100 BC, red precious corals (Corallium rubrum) became very popular in many regions, often associated with the so-called (early) Celts. Red corals are ideally suited to investigate several key questions of Iron Age research, like trade patterns or social and economic structures. While it is fairly easy to distinguish modern C. rubrum from bone, ivory or shells, archaeologists are confronted with ancient, hence altered, artifacts. Due to ageing processes, archaeological corals lose their intensive red color and shiny surface and can easily be confused with these other light colored materials. We pr…

polyeneslcsh:QE351-399.2[SHS.ARCHEO]Humanities and Social Sciences/Archaeology and PrehistoryDistribution networks02 engineering and technologyBiology010502 geochemistry & geophysics01 natural sciencescorals; shells; Raman spectroscopy; biogenic carbonates; carotenoids; polyenes; color fading; material degradation; archaeology[CHIM.ANAL]Chemical Sciences/Analytical chemistryArchaeological researchMaterial DegradationCorallium rubrumcoral0105 earth and related environmental sciencesmaterial degradationlcsh:MineralogyEcologycarotenoidscolor fadingGeologyOrnamentsarchaeology021001 nanoscience & nanotechnologyGeotechnical Engineering and Engineering Geologybiogenic carbonatesshellscoralsIron AgeRaman spectroscopy0210 nano-technology[SDU.STU.MI]Sciences of the Universe [physics]/Earth Sciences/MineralogyMinerals
researchProduct

Buckling analysis of multilayered structures using high-order theories and the implicit-mesh discontinuous Galerkin method

2022

This work presents a novel formulation for the linear buckling analysis of multilayered shells. The formulation employs high-order Equivalent-Single-Layer (ESL) shell theories based on the through-the-thickness expansion of the covariant components of the displacement field, whilst the corresponding buckling problem is derived using the Euler’s method. The novelty of the formulation regards the solution of the governing equations, which is obtained via implicit-mesh discontinuous Galerkin (DG) schemes. The DG method is a high-order accurate numerical technique based on a discontinuous representation of the solution among the mesh elements and on the use of suitably defined boundary integral…

Discontinuous-Galerkin method shell buckling multilayered structuresDiscontinuous Galerkin multilayered shellsSettore ING-IND/04 - Costruzioni E Strutture Aerospaziali
researchProduct

The shell organic matrix of the crossed lamellar queen conch shell (Strombus gigas)

2014

10 pages; International audience; In molluscs, the shell organic matrix comprises a large set of biomineral-occluded proteins, glycoproteins and polysaccharides that are secreted by the calcifying mantle epithelium, and are supposed to display several functions related to the synthesis of the shell. In the present paper, we have characterized biochemically the shell matrix associated to the crossed-lamellar structure of the giant queen conch Strombus gigas. The acid-soluble (ASM) and acid-insoluble (AIM) matrices represent an extremely minor fraction of the shell. Both are constituted of polydisperse and of few discrete proteins among which three fractions, obtained by preparative SDS-PAGE …

BiomineralizationPhysiologyGastropodaCarbohydratesMineralogyMannose010402 general chemistry01 natural sciencesBiochemistryCalcium CarbonateConch03 medical and health sciencesMatrix (mathematics)chemistry.chemical_compoundAnimal ShellsShellAnimalsMonosaccharide[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/BiomaterialsMantle (mollusc)Molecular BiologyGlycoproteins030304 developmental biologychemistry.chemical_classification0303 health sciencesbiologyProteinsCrossed-lamellarImmunogold labelling[ SDV.IB.BIO ] Life Sciences [q-bio]/Bioengineering/Biomaterialsbiology.organism_classificationCalcifying matrix0104 chemical sciencesCrystallographyStrombuschemistryMolluscCrystallizationGlycoproteinComparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology
researchProduct

How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait

2017

Cuticular hydrocarbons (CHCs) cover the cuticles of virtually all insects, serving as a waterproofing agent and as a communication signal. The causes for the high CHC variation between species, and the factors influencing CHC profiles, are scarcely understood. Here, we compare CHC profiles of ant species from seven biogeographic regions, searching for physiological constraints and for climatic and biotic selection pressures. Molecule length constrained CHC composition: long-chain profiles contained fewer linear alkanes, but more hydrocarbons with disruptive features in the molecule. This is probably owing to selection on the physiology to build a semi-fluid cuticular layer, which is necessa…

0106 biological sciences0301 basic medicineAlkenesBiology010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesAnimal ShellsAlkanesAnimalsEcosystemSelection (genetic algorithm)General Environmental ScienceGeneral Immunology and MicrobiologyAntsEcologyfungiSpecial FeatureGeneral MedicineBiological EvolutionHydrocarbonsPhenotype030104 developmental biologyTraitAdaptationGeneral Agricultural and Biological SciencesProceedings of the Royal Society B: Biological Sciences
researchProduct

Multi-isotopic and trace element evidence against different formation pathways for oyster microstructures

2021

Geochimica et cosmochimica acta 308, 326-352 (2021). doi:10.1016/j.gca.2021.06.012

BiomineralizationRARE-EARTH-ELEMENTSOysternitrogen isotopes550010504 meteorology & atmospheric sciencesPaleoclimateXRF010502 geochemistry & geophysicsSulfur isotopes01 natural sciencesMineralization (biology)Clumped isotopesMg/Cachemistry.chemical_compoundSclerochronologyddc:550CALCIFICATION RATECRASSOSTREA-GIGASCalcitebiologyStable isotope ratioOysterDistribution coefficientBivalveCalcitetrace elementOxygen isotope ratio cyclePacific oysterSTABLE-ISOTOPEStable isotopeIsotopes of nitrogenChemistryNORTH-SEASEMMECHANICAL CHARACTERISTICSmicrostructureCrassostrea gigas [Portuguese oyster]Ostreidae [oysters]MineralogyGeochemistry and Petrologybiology.animalClumpcd isotopes0105 earth and related environmental sciencesTrace elementARAGONITIC BIVALVE SHELLSbiology.organism_classificationBivalviachemistryTEMPERATURE-DEPENDENCEFORAMINIFERAL CALCITECrassostrea gigasHIGH-RESOLUTION
researchProduct

Impact of high pCO2 on shell structure of the bivalve Cerastoderma edule

2016

Raised atmospheric emissions of carbon dioxide (CO2) result in an increased ocean pCO2 level and decreased carbonate saturation state. Ocean acidification potentially represents a major threat to calcifying organisms, specifically mollusks. The present study focuses on the impact of elevated pCO2 on shell microstructural and mechanical properties of the bivalve Cerastoderma edule. The mollusks were collected from the Baltic Sea and kept in flow-through systems at six different pCO2 levels from 900 μatm (control) to 24,400 μatm. Extreme pCO2 levels were used to determine the effects of potential leaks from the carbon capture and sequestration sites where CO2 is stored in sub-seabed geologica…

0106 biological sciencesCerastoderma edule010504 meteorology & atmospheric sciencesCarbonatesShell (structure)MineralogyAquatic ScienceOceanography01 natural scienceschemistry.chemical_compoundAnimal ShellsMollusc shellAnimalsSeawaterCardiidae0105 earth and related environmental sciencesbiology010604 marine biology & hydrobiologyOcean acidificationGeneral MedicineCarbon DioxideHydrogen-Ion Concentrationbiology.organism_classificationPollutionchemistryCarbon dioxideCarbonateSeawaterNorth SeaSaturation (chemistry)Environmental MonitoringMarine Environmental Research
researchProduct

Equivalent-Single-Layer discontinuous Galerkin methods for static analysis of multilayered shells

2021

Abstract An original formulation for the elastic analysis of multilayered shells is presented in this work. The key features of the formulation are: the representation of the shell mean surface via a generic system of curvilinear coordinates; the unified treatment of general shell theories via an Equivalent-Single-Layer approach based on the through-the-thickness expansion of the covariant components of the displacement field; and an Interior Penalty discontinuous Galerkin scheme for the solution of the set of governing equations. The combined use of these features enables a high-order solution of the multilayered shell problem. Several numerical tests are presented for isotropic, orthotrop…

PhysicsCurvilinear coordinatesApplied MathematicsMathematical analysisIsotropyShell (structure)02 engineering and technologyOrthotropic material01 natural sciences020303 mechanical engineering & transports0203 mechanical engineeringDiscontinuous Galerkin methodModeling and Simulation0103 physical sciencesDisplacement fieldCovariant transformationDiscontinuous galerkin methods Equivalent-Single-Layer theories High-order modelling Multilayered shellsBoundary value problemSettore ING-IND/04 - Costruzioni E Strutture Aerospaziali010301 acoustics
researchProduct